Дейтерий
Дейте́рий (лат. deuterium, от др.-греч. δεύτερος «второй»), тяжёлый водоро́д, обозначается символами D и 2H — стабильный изотоп водорода с атомной массой, равной 2. В отличие от водорода, ядро (дейтрон) состоит из одного протона и одного нейтрона. Долгое время считалось, что у водорода не может быть тяжёлых изотопов. Дейтерий был открыт в 1932 году американским физико-химиком Гарольдом Юри. Природное содержание дейтерия — 0,0115 ± 0,0070%.
1 | Водород
|
1s1 |
Соединения изотопов водорода практически не различаются по своим химическим свойствам, но обладают довольно различными физическими свойствами (температура плавления, кипения, вес). Самым важным из соединений дейтерия является тяжёлая вода, D2O, обладающая токсическими свойствами. Мировое производство дейтерия составляет десятки тысяч тонн в год. Крупнейшими производителями тяжёлой воды в мире являются Индия, Китай и Иран. Наибольшие количества дейтерия применяются в атомной энергетике. Он обладает самыми лучшими свойствами замедления нейтронов. В смеси с тритием или в соединении с литием-6 (гидрид лития 6LiD) применяют для термоядерной реакции в водородных бомбах.
Дейтерий в научной и научно-популярной литературеПравить
Водород в «обычной» воде почти нацело состоит из протия. Кроме него во всякой воде есть тяжелый водород ― дейтерий Н2, его чаще обозначают символом D. Дейтерия в воде очень мало. На каждые 6700 атомов протия в среднем приходится только один атом дейтерия. Не следует думать, что это так уж мало. В природе часто малые причины вызывают большие последствия. Кроме протия и дейтерия, существует еще сверхтяжелый водород Н3. Его обычно называют тритием и обозначают символом Т. <...> | |
— Игорь Петрянов-Соколов, «Самое необыкновенное вещество», 1965 |
Обуздать термоядерную энергию, сделать ее управляемой ― значит навсегда решить проблему источников энергии для человечества. Это одновременно означает очищение атмосферы от вредных отходов. «Золой» термоядерного процесса будут безопасные атомы гелия. Горючим для термоядерной реакции служит тяжелый водород (дейтерий). Кладовая дейтерия ― это вода океанов. В ней примерно на пять тысяч молекул обычной воды H2O приходится одна молекула тяжелой воды D2O. Получение дейтерия ― уже отработанный технологический процесс. А запасы его в мировом океане практически навсегда обеспечат человечество энергией при максимальном ее потреблении. <...> | |
— Матвей Рабинович, «Размышления о проблемах современной управляемого термоядерного синтеза», 1967 |
Для того чтобы смогли слиться ядра дейтерия и трития, нужна температура порядка 50 миллионов градусов. Но для того чтобы реакция пошла, нужно еще, чтобы атомы столкнулись. Вероятность такого столкновения (и последующего слияния) тем больше, чем плотнее «упакованы» атомы в веществе. Расчеты показали, что это возможно только в том случае, если вещество находится хотя бы в жидком состоянии. А изотопы водорода становятся жидкостями лишь при температурах, близких к абсолютному нулю. Итак, с одной стороны, необходимы сверхвысокие температуры, а с другой ― сверхнизкие. И это ― в одном и том же веществе, в одном и том же физическом теле! Водородная бомба стала возможной только благодаря разновидности гидрида лития ― дейтериду лития-6. Это соединение тяжелого изотопа водорода ― дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 важен по двум причинам: он ― твердое вещество и позволяет хранить «сконцентрированный» дейтерий при плюсовых температурах, и, кроме того, второй его компонент ― литий-6 ― это сырье для получения самого дефицитного изотопа водорода ― трития. Собственно, Li-6 ― единственный промышленный источник получения трития. Нейтроны, необходимые для этой ядерной реакции, дает взрыв атомного «капсюля» водородной бомбы, он же создает условия (температуру порядка 50 миллионов градусов) для реакции термоядерного синтеза. В США идею использовать дейтерид лития-6 первым предложил доктор Э. Теллер. Но, по-видимому, советские ученые пришли к этой идее раньше: ведь не случайно первая термоядерная бомба в Советском Союзе была взорвана почти на полгода раньше, чем в США, и тем самым был положен конец американской политике ядерного и термоядерного шантажа.[4] | |
— Геннадий Диогенов, «Литий», 1969 |
Водород ― непременная составная часть всех органических веществ, в том числе макромолекулярных, имеющих огромное значение для жизнедеятельности. И в составе их молекул всегда есть и протиевые, и дейтериевые участки: например, определенное число гидроксильных групп ОН всегда содержит дейтерий (OD). Через живой организм за время его жизни проходит огромное количество воды, а значит, и водорода. Это, пожалуй, единственный элемент, атомы которого в организме так часто обновляются. И каждый раз при водном обмене происходит и обмен изотопов водорода: например, группы ОН превращаются в OD, a OD ― в ОН, и так много раз, постоянно. Большинство молекул полимеров в организме обладает высокой степенью упорядоченности. <...> А так как физико-химические характеристики протия и дейтерия различны, то при изотопном обмене внутри биомакромолекул то и дело меняются энергии ковалентных и водородных связей. Это «расшатывает» макромолекулы организма, что не может не оказывать влияния на биосинтез белка, на ферментативные и другие жизненно важные процессы. Тут нужно оговориться, что нельзя считать вредным для жизни вообще именно дейтерий. Он вреден только потому, что находится «в меньшинстве». Надо полагать, что для организмов, выращенных на дейтериевых соединениях, таким же «ядом» будут атомы протия: вредным всегда будет изотоп-примесь. Это подтвердили эксперименты, которые были проведены в Америке: оказалось, что низшие организмы, «привыкшие» к тяжелой воде, погибают при переселении в обычную. А что если в организме совсем не будет тяжелых изотопов водорода, а будет только тот, которого в природной воде больше всего, ― протий? В таком организме все химические и прочие связи водорода станут совершенно одинаковыми, и водородный обмен не будет вызывать расшатывания макромолекул. Не будут ли такие условия более благоприятными для роста и развития? <...> Нужно только вводить в организм воду (а желательно, и все продукты питания) без дейтерия или хотя бы с уменьшенным его содержанием. Тогда протий, как более подвижный атом, будет замещать дейтерий, и содержание последнего будет неуклонно сокращаться. Протиевую (легкую) воду можно получить, например, сжигая водород, собранный при электролизе природной воды. Известно, что выделяющийся в первые моменты разложения воды водород обеднен дейтерием, который остается в электролизере. Есть и другие методы. «Облегченную» воду, где содержание дейтерия уменьшено почти наполовину, можно получить из первых фракций (20% от первоначального веса) тающего свежевыпавшего снега. Конечно, полученная таким путем вода не содержит минеральных солей, входящих в состав природной, и их нужно в нее добавлять.[5] | |
— Николай Тюрин, «Легкая вода» — путь к долголетию? 1969 |
А вот изотопы водорода ― дейтерий и тритий ― позволяют изучать тончайшие механизмы химических и биохимических процессов. Эти изотопы водорода используют как «метки», потому что атомы дейтерия или трития сохраняют все химические свойства обычного легкого изотопа ― протия ― и способны подменять его в органических соединениях. Но дейтерий можно отличить от протия по массе, а тритий ― и по радиоактивности. Это позволяет проследить судьбу каждого фрагмента меченой молекулы. | |
— Вячеслав Жвирблис, «Водород», 1969 |
Давно уже установлено, что химические элементы имеют своих двойников ― изотопы. Они отличаются от основного элемента лишь тем, что масса их атомов другая. Изотопы могут быть, тяжелее или легче основного элемента. В химически чистой воде есть такая, молекулы которой состоят из изотопов водорода или кислорода. Чаще всего это тяжёлая вода, в ней присутствует не водород, а его тяжелый собрат ― дейтерий. У тяжелой воды, естественно, и плотность, и другие физические характеристики иные. Некоторые ученые считают, что вода, даже химически чистая, представляет собой смесь молекул разного сорта: простых и ассоциированных, объединенных в группы.[7] | |
— Владимир Мезенцев, «Чудеса: Популярная энциклопедия», 1991 |
В 1932 году американский физик Гарольд Юри, изучая свойства воды, обнаружил ее разновидность с большей плотностью. Вода была названа тяжелой. Возможность ее существования объяснялась тем, что вместо водорода в молекуле воды был дейтерий. Дейтерий отличался от водорода наличием в ядре еще и нейтрона, открытого в этом же году англичанином Джеймсом Чедвиком. А о том, что атомное ядро и должно состоять из протонов и нейтронов, догадался все в том же 1932 году русский физик Дмитрий Иваненко. Вот так международными усилиями и развивалась в те годы ядерная физика. Пока не стало ясно, что это путь к супероружию. Тут все сотрудничество разом и прекратили.[8] | |
— Владислав Быков, Ольга Деркач, «Книга века», 2000 |
Предполагается, что главное отличие странной материи от обычной состоит в разных значениях отношения заряда к массе (q/ m). Для обычной материи это отношение лежит в пределах от 1/3 (дейтерий, тритий) до 1 (один протон у обычного водорода), у большинства изотопов других атомов ~ 1/2 из-за того, что число протонов примерно равно числу нейтронов. Для странной материи это отношение q/m лежит в пределах от 1/10 до 1/20.[9] | |
— Владимир Горбачев, «Концепции современного естествознания», 2003 |
Считают, что все четыре вида взаимодействия и их константы обусловливают нынешнее строение и существование Вселенной. Так, гравитационное ― удерживает планеты на их орбитах и тела на Земле. Электромагнитное ― удерживает электроны в атомах и соединяет их в молекулы, из которых состоим и мы сами. Слабое ― обеспечивает длительное «горение» звезд и Солнца, дающего энергию для протекания всех процессов жизни на Земле. Сильное взаимодействие обеспечивает возможность стабильного существования большинства ядер атомов. Теоретическая физика показывает, что изменение числовых значений этих или других констант приводит к разрушению устойчивости одного или нескольких структурных элементов Вселенной. Так, например, увеличение массы электрона m 0 от ~ 0,5 MэB до 0,9 МэВ нарушит энергетический баланс в реакции образования дейтерия в солнечном цикле и приведет к дестабилизации стабильных атомов и изотопов. Дейтерий ― атом водорода, состоящий из протона и нейтрона. Это «тяжелый» водород с А = 2 (тритий имеет А = 3.) Уменьшение αs всего на 40% привело бы к тому, что дейтерий был бы не стабилен. Увеличение же сделает стабильным бипротон, что приведет к выгоранию водорода на ранних стадиях эволюции Вселенной. Константа αе изменяется в пределах 1/ 170 < αе < 1/ 80. Другие значения приводят к невозможности должного отталкивания протонов в ядрах, а это ведет к нестабильности атомов. Увеличение αw привело бы к уменьшению времени жизни свободных нейтронов.[9] | |
— Владимир Горбачев, «Концепции современного естествознания», 2003 |
Теория о том, что причиной старения организма может быть так называемая тяжёлая вода, содержащая вместо водорода его тяжёлый изотоп дейтерий, была впервые выдвинута в 1934 году. Предполагалось, что тяжёлая вода не может обеспечивать биохимические реакции. Дейтерий ― открытый в 1932 году изотоп водорода с атомным весом 2, имеющий в ядре атома один протон и один нейтрон. Формула тяжёлой воды ― D20 и молекулярный вес 20, а не 18, как у лёгкой воды. Тяжёлая вода содержится в природной воде, но в очень небольших количествах. В натуральных источниках, в реках и морях, одна молекула тяжёлой воды приходится на 6700 молекул H2O. Это составляет 0,015%. В 1938-1939 годах началось промышленное производство тяжёлой воды посредством избирательного расщепления лёгкой воды электролизом. Тяжёлая вода нашла применение в ядерной физике как замедлитель нейтронов. Эксперименты с растениями и животными показали, что тяжёлая вода действительно токсична, но лишь в очень больших концентрациях. Мыши погибали, если доля тяжёлой воды превышала 20%. Простейшие животные, нематоды, не только могли жить в тяжёлой воде, но их жизнь даже удлинялась на несколько дней. Заметить какую-либо токсичность при концентрациях дейтерия в 0,015% не удавалось. Было к тому же обнаружено, что содержание тяжёлой воды в организме с возрастом у млекопитающих не увеличивается, а уменьшается, так как дейтерий хуже включается в биохимические процессы, чем обычный водород. Однако интерес к тяжёлой воде как причине старения возродился после публикации в 1973 году нового варианта теории токсичности тяжёлой воды.[10] | |
— Жорес Медведев, «Пить или не пить?» 2008 |
Дейтерий в публицистике и беллетристикеПравить
Самая главная для человечества энергетическая проблема может быть решена путем использования управляемых термоядерных процессов. Источником энергии для них является дейтерий ― тяжелый изотоп водорода, его запас в океане можно считать неограниченным. Глобальный кризис, связанный с истощением сырьевых ресурсов, наука может предотвратить путем перевода промышленного производства на так называемые «замкнутые процессы», как это имеет место в природе, где ничего не выбрасывается, поскольку все снова потребляется. С научной точки зрения замкнутые процессы вполне осуществимы, хотя и значительно сложнее.[11] | |
— Пётр Капица, «Глобальные научные проблемы ближайшего будущего», 1972 |
У всех на языке были экспериментальные открытия минувших полутора лет. Вслед за первой нейтральной частицей ― нейтроном Чэдвика ― появление первой античастицы ― позитрона Андерсона. Вслед за первыми ядерными реакциями на кавендишевском ускорителе Коккрофта и Уолтона ― первые признаки искусственной радиоактивности в парижских опытах Фредерика и Ирэн Жолио-Кюри. И еще: тяжелый изотоп водорода ― дейтерий ― и первые капли тяжелой воды… Новые триумфы ― новые проблемы ― новые надежды… Если бы эта волна научных успехов сумела смыть хоть одну из печалей трагического времени![12] | |
— Даниил Данин. «Нильс Бор», 1975 |
— Земля, — сказала она, — нашей Земли больше нет. Что от нее осталось — это океан горящей лавы и пепла. Шеф сказал, выгорел весь дейтерий. <…> Кто-то где-то применил супербомбу. Мы даже не знаем, кто. И начала гореть вода. Вся вода, что была на Земле. Ручейки, реки, озера, моря. Учёные утверждали, что это невозможно. Теперь все наверняка мертвы — никто и не понял, в чем было дело. | |
Герберт В. Франке, «Стеклянная западня», 1962 |
Что касается систем, не использующих урана и тория (их запасы не безграничны, а хранение радиоактивных продуктов деления и выделение газообразных продуктов деления представляют собою некоторую экологическую опасность), то в них я предполагаю “тритиевый бридинг”. Установки, питаемые чистым дейтерием, всегда будут менее предпочтительны по сравнению с установками, в которых используется реакция дейтерия с тритием, сечение которой в десятки (почти в 100) раз больше сечения дейтериевой реакции. Размножение трития возможно потому, что дейтерий вовлекается в дейтериевые реакции с образованием трития, а также благодаря размножению быстрых нейтронов при делении и при реакции (n, 2n); затем эти нейтроны захватываются дейтерием или литием-6 с образованием трития. Конечно, все эти соображения являются моим частным и сейчас уже несколько дилетантским мнением. Очень возможно, что основой энергетики ХХI и последующих веков будут установки управляемого термоядерного синтеза.[13] | |
— Андрей Сахаров. «Воспоминания», 1989 |
Необходимость водорода для водородной бомбы очевидна только на словесном уровне. А на уровне физики этот элемент в водородной бомбе вообще не используется. Водород ― самый легкий элемент, но не самый склонный к слиянию. Условия, в которых слияние может идти, сильно различаются для разных ядер, и достижимее всего слияние не самого водорода, а его изотопов ― дейтерия и трития, D и T. Дейтерий, хоть и в малом количестве, подмешан ко всякому природному водороду и выделять его в чистом виде научились еще в довоенные годы. Потому-то в постановлении правительства в июне 1948 года говорилось о «горении дейтерия». Трития в природе практически нет вовсе, и получать его очень трудно, точнее, дорого. К тому же тритий ― радиоактивен и, уже добытый, распадается со временем. Свойства дейтерия, и тем более трития, были недостаточно изучены, чтобы проводить точные расчеты. Однако точно было известно, что дейтерий и тритий ― газы. Как же из газа сделать слой, окружающий центральный атомный шар в Слойке? Трудно. Гинзбург предложил использовать для «водородного» слоя гораздо более удобное вещество ― твердое и нерадиоактивное ― химическое соединение дейтерия с литием ― дейтерид лития, в химических символах LiD. К этим символам вскоре прибавили совсем нехимический суффикс и за новым термоядерным веществом закрепилось ласковое женское имя LiDочка. Литий ― тоже легкий элемент, но LiDочка ― это уже не газ, а твердое вещество, с которым проще иметь дело. Однако Гинзбург предложил LiDочку по другой причине и сам не сразу понял, насколько новая термоядерная взрывчатка хороша. Для него вначале главным было то, что литий, облученный нейтронами от первичного атомного взрыва, добавляет некоторое количество энергии и тем самым дополнительно разогревает термоядерный слой, делая его более способным к слиянию ядер. Спустя несколько месяцев он догадается, что гораздо важнее слагаемое «тритий».[14] | |
— Геннадий Горелик. «Андрей Сахаров. Наука и свобода», 2004 |
Астроном сидит на пляже и наблюдает заход солнца. Он знает, что это звезда средней величины, на поверхности которой шесть тысяч градусов, он знает химический состав — дейтерий, образующий гелий, и ещё много всего. Но, глядя на солнце, он испытывает некий восторг — не от знания, а от красоты момента. На любовь можно посмотреть и как поэт, и как лаборант. В своих книгах я стараюсь смотреть с обеих сторон.[15] | |
— Игорь Волгин, «Женщине дано иное зрение», 2009 |
Дейтерий в поэзииПравить
То расщепленное ядро | |
— Варлам Шаламов, «Атомная поэма», до 1956 |
— Владимир Ананьев, «На полусогнутых» (бардовская песня), 2013 |
ИсточникиПравить
- ↑ Atomic weights of the elements 2013 (IUPAC Technical Report) — IUPAC, 1960. — ISSN 0033-4545; 1365-3075; 0074-3925 — doi:10.1515/PAC-2015-0305
- ↑ И. В. Петрянов-Соколов. Самое необыкновенное вещество. — М.: «Химия и жизнь» № 3, 1965 г.
- ↑ М. С. Рабинович. Размышления о проблемах современной управляемого термоядерного синтеза. — М.: «Химия и жизнь», № 11, 1967 г.
- ↑ Г. Диогенов. «Литий». — М.: «Химия и жизнь», № 3, 1969 г.
- ↑ Н. Е. Тюрин. «Лёгкая вода» — путь к долголетию? — М.: «Химия и жизнь», № 3, 1969 г.
- ↑ В. Е. Жвирблис. «Водород». — М.: «Химия и жизнь», № 9, 1969 г.
- ↑ В.А.Мезенцев «Чудеса: Популярная энциклопедия». Том 1. — Алма-Ата: Главная редакция Казахской советской энциклопедии, 1991 г.
- ↑ Владислав Быков, Ольга Деркач. «Книга века». ― М.: Вагриус, 2001 г.
- ↑ 9,0 9,1 В. В. Горбачёв. Концепции современного естествознания. ― М.: Мир и Образование, 2003 г.
- ↑ Жорес Медведев. Пить или не пить? — М.: «Наука и жизнь», № 6, 2008 г.
- ↑ Капица П. Л. Научные труды. Наука и современное общество. — М.: Наука, 1998 г.
- ↑ Даниил Данин. «Нильс Бор». — М.: «Молодая гвардия», 1978 г.
- ↑ А.Д.Сахаров, «Воспоминания» (1983-1989).
- ↑ Геннадий Горелик. «Андрей Сахаров. Наука и свобода». — М.: Вагриус, 2004 г.
- ↑ Игорь Волгин Женщине дано иное зрение. — М.: „НГ Ex libris“, №7, 2009 г.
- ↑ Шаламов В.Т. Собрание сочинений. — Москва, Художественная литература Вагриус, 1998 г.